## Chemistry 12 Worksheet 2-2 LeChatelier's Principle Name

| <br>r - 4 - | - 1 | in nuaccum | :11 1 | <br>: | :1:1: |  |
|-------------|-----|------------|-------|-------|-------|--|
|             |     |            |       |       |       |  |

| 1. | In order to decide what effect a <i>change in pressure</i> will have on an equilibrium system |
|----|-----------------------------------------------------------------------------------------------|
|    | with gases, what is the first thing you should do when given the balanced equation?           |

| 2. | Predict which way the following equilibrium systems will shift when the pressure is |
|----|-------------------------------------------------------------------------------------|
|    | increased.(NOTE: Some may have no shift)                                            |

b). 
$$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$$
 ...... Answer\_\_\_\_\_

c). 
$$4NH_{3(g)} + 5O_{2(g)} \rightleftharpoons 4NO_{(g)} + 6H_2O_{(g)}$$
...... Answer\_\_\_\_\_

3. Which way will the following equilibrium shift if the *pressure* on the system is *decreased*?

$$2C_2H_{6(g)} + 7O_{2(g)} \rightleftharpoons 4CO_{2(g)} + 6H_2O_{(g)}$$
 Answer\_\_\_\_\_

| 4. | Explain why | a flask fill  | ed with N | $NO_{2(g)}$ and $N_2O_4$        | (g) will get darke | r when heated. | Use the |
|----|-------------|---------------|-----------|---------------------------------|--------------------|----------------|---------|
|    | equation:   | $N_2O_{4(g)}$ | + heat    | $\rightleftharpoons 2NO_{2(g)}$ |                    |                |         |

5. State Le Chatelier's Principle.

6. *Hydrogen peroxide* is decomposed as follows:

$$H_2O_{2(l)} \rightleftharpoons H_{2(g)} + O_{2(g)} \quad \Delta H = +187 \, kJ$$

Predict the *direction of equilibrium shift* by each of the following imposed changes:

- a) *Increase* the [H<sub>2</sub>] ...... Answer \_\_\_\_\_
- b) **Decrease** the [O<sub>2</sub>] ...... Answer \_\_\_\_\_
- c) Decrease the total pressure ...... Answer \_\_\_\_\_
- d) Increase the temperature...... Answer \_\_\_\_\_
- e) Add MnO<sub>2</sub> as a *catalyst*...... Answer \_\_\_\_\_
- 7. Consider the following reaction at equilibrium:

$$H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$$

a) Addition of more H<sub>2</sub> gas to the container will do what to the rate of the forward reaction?

Answer

b) If, for a while, the rate of the *forward* reaction is *greater than* the rate of the *reverse* reaction, what will happen to the [HI]?

Answer \_\_\_\_\_

c) As the [HI] is increased, what will happen to the rate of the reverse reaction?

Answer

d) When the rate of the reverse reaction once again becomes equal to the rate of the

forward reaction, a new\_\_\_\_\_ has been reached.

e) Since the rate of the *forward* reaction was, for a while, greater than the rate of the *reverse* reaction, the new equilibrium will have a slightly higher concentration of

\_\_\_\_\_ and a slightly lower concentration of \_\_\_\_\_ &

\_\_\_\_\_

f) Sketch a graph of the relative concentrations of each species as the process outlined in **a-e** of this question (*on the last page*) is carried out.



TIME →

8. Consider the following equilibrium and state which way (left or right) the equilibrium shifts when each of the changes below are made.

Heat + 
$$CH_{4(g)} + 2H_2S_{(g)} \iff CS_{2(g)} + 4H_{2(g)}$$

- a) CH<sub>4</sub> gas is added ...... Answer \_\_\_\_\_
- b) CS<sub>2</sub> gas is removed...... Answer \_\_\_\_\_
- c) H<sub>2</sub> gas is added ...... Answer \_\_\_\_\_
- d) The *volume* of the container is decreased ...... Answer \_\_\_\_\_
- e) The temperature is increased ...... Answer \_\_\_\_\_
- f) The *pressure* is decreased ...... Answer \_\_\_\_\_
- g) Helium gas is added to increase the total pressure.... Answer \_\_\_\_\_
- 9. Using the following equilibrium, state what would happen to the equilibrium *partial* pressure of  $CH_3OH$  gas when each of the following changes are made:

$$CO_{(g)} + 2H_{2(g)} \rightleftharpoons CH_3OH_{(g)} \qquad \Delta H = -75.2 \text{ kJ}$$

- a) CO gas is added to the container ...... Answer \_\_\_\_\_
- b) The temperature is increased ...... Answer \_\_\_\_\_
- c) The *total pressure* of the system is increased....... Answer\_\_\_\_\_

| CO(a) + | $-2H_{2(q)}$ | $\rightleftharpoons CH_3OH_{(g)}$ | $\Delta H = -75.2 \text{ k}.$ |
|---------|--------------|-----------------------------------|-------------------------------|
| י ועוטי | 4191         |                                   |                               |

| d) | H <sub>2</sub> gas is removed from the system | Answer      |  |
|----|-----------------------------------------------|-------------|--|
| u, | 11) gas is idilitied that the system          | 1 1115 W C1 |  |

$$2NO_{(g)} + Cl_{2(g)} \rightleftharpoons 2NOCl_{(g)} \quad \Delta H = -77 \text{ kJ}$$

state the **optimal pressure and temperature conditions** necessary for maximum production of NOCl.(*high or low?*)

11. For the reaction:

$$3H_{2(g)}+ + N_{2(g)} \rightleftharpoons 2NH_{3(g)} + heat$$

state the *optimal conditions* for a **high yield** of *ammonia (NH<sub>3</sub>)*. (high or low?)

12. Given the following equilibrium system, state which way the equilibrium will shift when the changes below are made:

$$2C_2H_{6(g)} + 7O_{2(g)} \rightleftharpoons 4CO_{2(g)} + 6H_2O_{(g)} + heat$$

- a) The *volume* of the container is halved...... Answer \_\_\_\_\_
- b) The temperature is decreased ...... Answer \_\_\_\_\_
- c) CO<sub>2</sub> is added to the container...... Answer\_\_\_\_\_
- d) The *pressure* is increased ...... Answer \_\_\_\_\_
- e) O<sub>2</sub> gas is removed from the system ...... Answer \_\_\_\_\_
- f) Neon gas is added to increase the pressure ..... Answer \_\_\_\_\_
- h) A *catalyst* is added...... Answer \_\_\_\_\_
- 13. Using the equilibrium:  $N_{2(g)} + O_{2(g)} + heat \rightleftharpoons 2NO_{(g)}$ Explain why nitric oxide (NO) does **not** generally form in the atmosphere but **is** formed in the internal combustion engine of an automobile or during a lightning storm.

\_\_\_\_\_

14. Explain why a syringe containing NO<sub>2</sub> gas will first get *darker* and *then lighter* in colour when compressed. Use the equilibrium equation:

$$N_2O_{4(g)}$$
 + heat  $\rightleftharpoons$   $2NO_{2(g)}$  colourless brown

15. Explain why a flask containing NO<sub>2</sub> will get *lighter* in colour when put into *ice water*. Use the equation:

$$N_2O_{4(g)}$$
 + heat  $\rightleftharpoons$   $2NO_{2(g)}$  colourless brown

16. Given the following graph showing the concentrations of species A, B and C, state what changes in **temperature** or **concentration** are responsible for each of the shifts shown on the graph. The equilibrium equation is:

$$A_{(g)} + B_{(g)} \rightleftharpoons C_{(g)}$$
  $\Delta H = -65 \text{ kJ}$ 



- a) At time I, the
- b) At time II, the
- c) At time III, the
- d) At time IV, the

17. Given the equilibrium equation:

$$XY_{(g)}$$
 + heat  $\rightleftharpoons$   $X_{(g)}$  +  $Y_{(g)}$ 

If initially, at equilibrium, the [XY] = 3.0 M, the [X] = 5.0 M and the [Y] = 6.0 M, draw a graph *similar to the one in question 16* showing qualitatively what happens to the concentrations of each species as the following changes are made to the system:

Time I - The *temperature is increased*.

Time II - Some X(g) is *added* to the system

Time III - Some  $Y_{(g)}$  is *removed* from the system

Time IV - The temperature is decreased.

