Chemistry 12

Worksheet 2-2

LeChatelier's Principle Name

\qquad

1. In order to decide what effect a change in pressure will have on an equilibrium system with gases, what is the first thing you should do when given the balanced equation?
2. Predict which way the following equilibrium systems will shift when the pressure is increased.(NOTE: Some may have no shift)
a). $\quad N_{2(g)}+O_{2(g)} \rightleftarrows 2 \mathrm{NO}_{(g)} \ldots \ldots \quad$ Answer \qquad
b). $\quad 2 \mathbf{S O}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftarrows \mathbf{2 S O}_{\mathbf{3 (g)}} \ldots \ldots \quad$ Answer \qquad
c). $\quad 4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightleftarrows 4 \mathrm{NO}_{(\mathrm{g})}+\mathbf{6} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \ldots \ldots . \quad$ Answer \qquad
3. Which way will the following equilibrium shift if the pressure on the system is decreased?

$$
2 C_{2} \mathrm{H}_{6(\mathrm{~g})}+7 \mathrm{O}_{2(\mathrm{~g})} \rightleftarrows 4 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} O_{(\mathrm{g})} \quad \text { Answer }
$$

4. Explain why a flask filled with $\mathrm{NO}_{2(\mathrm{~g})}$ and $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ will get darker when heated. Use the equation: $\quad N_{2} \mathrm{O}_{4(\mathrm{~g})}+$ heat $\rightleftarrows \mathbf{2 N O}_{2(\mathrm{~g})}$
\qquad
\qquad
\qquad
\qquad
5. State Le Chatelier's Principle.
\qquad
\qquad
\qquad
6. Hydrogen peroxide is decomposed as follows:

$$
\mathrm{H}_{2} \mathrm{O}_{2(\mathrm{l})} \rightleftarrows \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \quad \Delta H=+187 \mathrm{~kJ}
$$

Predict the direction of equilibrium shift by each of the following imposed changes:
a) Increase the $\left[\mathrm{H}_{2}\right]$ \qquad Answer \qquad
b) Decrease the $\left[\mathrm{O}_{2}\right]$ \qquad Answer \qquad
c) Decrease the total pressure \qquad Answer \qquad
d) Increase the temperature. \qquad Answer \qquad
e) Add MnO_{2} as a catalyst.

Answer \qquad
7. Consider the following reaction at equilibrium:

$$
H_{2(\mathrm{~g})}+I_{2(\mathrm{~g})} \rightleftarrows 2 H I_{(\mathrm{g})}
$$

a) Addition of more H_{2} gas to the container will do what to the rate of the forward reaction?

Answer \qquad
b) If, for a while, the rate of the forward reaction is greater than the rate of the reverse reaction, what will happen to the [HI]?

Answer \qquad
c) As the [HI] is increased, what will happen to the rate of the reverse reaction?

Answer \qquad
d) When the rate of the reverse reaction once again becomes equal to the rate of the forward reaction, a new \qquad has been reached.
e) Since the rate of the forward reaction was, for a while, greater than the rate of the reverse reaction, the new equilibrium will have a slightly higher concentration of
\qquad and a slightly lower concentration of \qquad \&
f) Sketch a graph of the relative concentrations of each species as the process outlined in a-e of this question (on the last page) is carried out.

TIME \rightarrow
8. Consider the following equilibrium and state which way (left or right) the equilibrium shifts when each of the changes below are made.

$$
\mathrm{Heat}+\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})} \rightleftarrows \mathrm{CS}_{2(\mathrm{~g})}+4 \mathrm{H}_{2(\mathrm{~g})}
$$

a) CH_{4} gas is added \qquad
b) CS_{2} gas is removed. \qquad
c) H_{2} gas is added \qquad
d) The volume of the container is decreased \qquad Answer \qquad
e) The temperature is increased \qquad Answer \qquad
f) The pressure is decreased \qquad Answer \qquad
Answer \qquad
Answer \qquad
Answer \qquad
f

Answer \qquad
9. Using the following equilibrium, state what would happen to the equilibrium partial pressure of $\mathrm{CH}_{3} \mathrm{OH}$ gas when each of the following changes are made:

$$
\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})} \quad \Delta \mathrm{H}=-75.2 \mathrm{~kJ}
$$

a) CO gas is added to the container \qquad
b) The temperature is increased \qquad
c) The total pressure of the system is increased. \qquad

Answer \qquad
Answer \qquad
Answer \qquad

$$
\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})} \quad \Delta H=-75.2 \mathrm{~kJ}
$$

d) H_{2} gas is removed from the system \qquad Answer \qquad
e) A catalyst is added

Answer \qquad
f) The volume of the container is increased \qquad Answer \qquad
10. For the reaction:

$$
2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{NOCl}_{(\mathrm{g})} \quad \Delta \mathrm{H}=-77 \mathrm{~kJ}
$$

state the optimal pressure and temperature conditions necessary for maximum production of NOCl.(high or low?)

1. \qquad pressure

2 \qquad temperature
11. For the reaction:

$$
3 \mathrm{H}_{2(\mathrm{~g})}++\mathrm{N}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{NH}_{3(\mathrm{~g})}+\text { heat }
$$ state the optimal conditions for a high yield of ammonia ($\mathbf{N H}_{3}$). (high or low?)

1. \qquad pressure

2 \qquad temperature
12. Given the following equilibrium system, state which way the equilibrium will shift when the changes below are made:

$$
2 \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}+7 \mathrm{O}_{2(\mathrm{~g})} \rightleftarrows 4 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\text { heat }
$$

a) The volume of the container is halved
Answer
\qquad
b) The temperature is decreased \qquad Answer \qquad
c) CO_{2} is added to the container.

Answer \qquad
d) The pressure is increased \qquad Answer \qquad
e) O_{2} gas is removed from the system \qquad Answer \qquad
f) Neon gas is added to increase the pressure \qquad Answer \qquad
h) A catalyst is added. \qquad Answer \qquad
13. Using the equilibrium: $\quad N_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}+$ heat $\rightleftarrows 2 \mathrm{NO}_{(\mathrm{g})}$

Explain why nitric oxide (NO) does not generally form in the atmosphere but is formed in the internal combustion engine of an automobile or during a lightning storm.
14. Explain why a syringe containing NO_{2} gas will first get darker and then lighter in colour when compressed. Use the equilibrium equation:

$$
\underset{\substack{\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}^{\text {colourless }}}}{ }+\text { heat } \rightleftarrows \underset{\text { brown }}{2 \mathrm{NO}_{2(\mathrm{~g})}}
$$

15. Explain why a flask containing NO_{2} will get lighter in colour when put into ice water. Use the equation:

$$
\underset{\text { colourless }}{\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}+\text { heat }} \rightleftarrows \underset{\text { brown }}{2 \mathrm{NO}_{2(\mathrm{~g})}}
$$

16. Given the following graph showing the concentrations of species A, B and C , state what changes in temperature or concentration are responsible for each of the shifts shown on the graph. The equilibrium equation is:

$$
A_{(g)}+B_{(g)} \rightleftarrows C_{(g)} \quad \Delta H=-65 \mathrm{~kJ}
$$

a) At time I, the
b) At time II, the \qquad
c) At time III, the \qquad
d) At time IV, the \qquad
17. Given the equilibrium equation:

$$
X Y_{(g)}+\text { heat } \rightleftarrows X_{(g)}+Y_{(g)}
$$

If initially, at equilibrium, the $[\mathrm{XY}]=3.0 \mathrm{M}$, the $[\mathrm{X}]=5.0 \mathrm{M}$ and the $[\mathrm{Y}]=6.0 \mathrm{M}$, draw a graph similar to the one in question 16 showing qualitatively what happens to the concentrations of each species as the following changes are made to the system:

Time I - The temperature is increased.
Time II - Some X(g) is added to the system
Time III - Some $\mathrm{Y}_{(\mathrm{g})}$ is removed from the system
Time IV - The temperature is decreased.

